/// © MiroZ 2024 #include "app_config.h" #include "TaskMgr.h" #include "SensorService.h" #include "Buffers.h" #include "SensorData.h" static const char *TAG = "sensors"; #define ms_to_us(ms) ((ms)*1000) #define LIGHT_SENSOR_PIN 36 struct BMP_DATA m_bmp_data; struct BME_DATA m_bme_data; SensorService::SensorService(AppIF & app_if) : m_app_if(app_if) { } void SensorService::start() { ESP_LOGW(TAG, "Starting sensor service..."); esp_log_level_set("gpio", ESP_LOG_WARN); memset(&m_bmp_data, 0, sizeof(m_bmp_data)); memset(&m_bme_data, 0, sizeof(m_bme_data)); m_bmp280 = new Bmp280(Wire); m_bme68x = new Bme68x(Wire); m_ld2410 = new LD2410(); if(!m_bmp280->init()) ESP_LOGE(TAG, "bmp280 sensor error"); if(!m_bme68x->init()) ESP_LOGE(TAG, "bme68x sensor error"); if(!m_ld2410->init()) ESP_LOGE(TAG, "ld2410 sensor error"); assert(m_i2c1_task = TaskMgr::getInstance().createTask(std::bind(&SensorService::run_i2c_1, this), I2C1_TASK_NAME, I2C1_TASK_STACK_SIZE, I2C1_TASK_PRIORITY, I2C1_TASK_CORE)); assert(m_i2c2_task = TaskMgr::getInstance().createTask(std::bind(&SensorService::run_uart, this), UART_TASK_NAME, UART_TASK_STACK_SIZE, UART_TASK_PRIORITY, UART_TASK_CORE)); pinMode(LIGHT_SENSOR_PIN, INPUT); } void SensorService::postBme68xData(float pressure, float temp) { struct msg { struct MESSAGE_HEADER header; struct OTHERS others; struct GAS gas; }; uint8_t msg_buffer[100]; struct msg *data_to_send = (struct msg *)msg_buffer; HEADER_MESSAGE_P(&data_to_send->header); GAS_MESSAGE_P(&data_to_send->gas, 0); data_to_send->others.light = m_light_value; data_to_send->others.pressure = pressure; data_to_send->others.temp = temp; int num_total = 0; struct GAS_DATA * p = data_to_send->gas.data; for(int n = 0; n < 10; n++) { if(m_bme_data.measurement_bitmask & (1 << n)) { p[num_total].gas_resistance = m_bme_data.measurement[n].resistance; p[num_total++].index = n; } } data_to_send->gas.header.num_measurements = num_total; data_to_send->gas.humidity = m_bme_data.humidity; m_app_if.getBuffer()->putBlock((uint8_t*)&data_to_send, sizeof(*data_to_send) + num_total * sizeof(struct GAS_DATA)); // clear the blackboard memset(&m_bme_data, 0, sizeof(m_bme_data)); } /// @brief Actual light value is minimum in 2s window /// @param light_value void SensorService::processLight(int light_value) { static uint16_t min_light_val = 0xffff; static int last_light_val = -1; static uint64_t last_time = esp_timer_get_time(); uint64_t now; // handle light sensor if(light_value < min_light_val) min_light_val = light_value; now = esp_timer_get_time(); if(now - last_time >= 2000000) // >= 2s { ESP_LOGI(TAG, "light: %d", min_light_val); if(last_light_val >= 0) { if(abs(min_light_val - last_light_val) > 4096*5/100) { ESP_LOGI(TAG, "light tripped"); struct msg { struct MESSAGE_HEADER header; struct MESSAGE_TYPE_VAL_REASON light; }; struct msg m; HEADER_MESSAGE_P(&m.header); LIGHT_MESSAGE_P(&m.light, min_light_val, 1); m_app_if.getBuffer()->putBlock((uint8_t*)&m, sizeof(m)); } } last_light_val = min_light_val; m_light_value = min_light_val; min_light_val = 0xffff; last_time = now; } } // handles pressure and voc sensor void SensorService::run_i2c_1() { while(true) { m_bmp280->read(m_bmp_data.temp, m_bmp_data.pressure); bool bme_cycle_finished = m_bme68x->read(&m_bme_data); uint16_t read_light_val = analogRead(LIGHT_SENSOR_PIN); if(bme_cycle_finished) { postBme68xData(m_bmp_data.pressure, m_bmp_data.temp); } processLight(read_light_val); delay(10); } } // handles radar only void SensorService::run_uart() { int64_t last_read = esp_timer_get_time(); while(true) { bool has_read = m_ld2410->read(); if(has_read && esp_timer_get_time() - last_read >= ms_to_us(10000-50)) { int64_t now = esp_timer_get_time(); ESP_LOGI(TAG, "count %d", (int)m_ld2410->stationary_energy[0]); if(m_ld2410->stationary_energy[0] != 0) { struct msg { struct MESSAGE_HEADER header; struct RADAR radar; }; struct msg m; HEADER_MESSAGE_P(&m.header); RADAR_MESSAGE_P(&m.radar); for(int n = 0; n < 24; n++) { if(n < 14) m.radar.vals[n] = m_ld2410->motion_energy[n] > 0xffff ? 0xffff : (uint16_t)m_ld2410->motion_energy[n]; else m.radar.vals[n] = m_ld2410->stationary_energy[n-14] > 0xffff ? 0xffff : (uint16_t)m_ld2410->stationary_energy[n-14]; } m_app_if.getBuffer()->putBlock((uint8_t*)&m, sizeof(m)); ESP_LOGI(TAG, "delta t: %lld", (now - last_read)/1000); last_read = now; #if 0 ESP_LOGI("stationary energy", "%0.0f %0.0f %0.0f %0.0f %0.0f %0.0f %0.0f", m_ld2410->stationary_energy[3]/m_ld2410->stationary_energy[0], m_ld2410->stationary_energy[4]/m_ld2410->stationary_energy[0], m_ld2410->stationary_energy[5]/m_ld2410->stationary_energy[0], m_ld2410->stationary_energy[6]/m_ld2410->stationary_energy[0], m_ld2410->stationary_energy[7]/m_ld2410->stationary_energy[0], m_ld2410->stationary_energy[8]/m_ld2410->stationary_energy[0], m_ld2410->stationary_energy[9]/m_ld2410->stationary_energy[0]); ESP_LOGW("motion energy", "%0.0f %0.0f %0.0f %0.0f %0.0f %0.0f %0.0f %0.0f %0.0f", m_ld2410->motion_energy[5]/m_ld2410->motion_energy[0], m_ld2410->motion_energy[6]/m_ld2410->motion_energy[0], m_ld2410->motion_energy[7]/m_ld2410->motion_energy[0], m_ld2410->motion_energy[8]/m_ld2410->motion_energy[0], m_ld2410->motion_energy[9]/m_ld2410->motion_energy[0], m_ld2410->motion_energy[10]/m_ld2410->motion_energy[0], m_ld2410->motion_energy[11]/m_ld2410->motion_energy[0], m_ld2410->motion_energy[12]/m_ld2410->motion_energy[0], m_ld2410->motion_energy[13]/m_ld2410->motion_energy[0]); #endif m_ld2410->resetGates(); } } if(has_read) // next read will happen in 100ms. sleep untill just before then. delay(95); } }