wellhub_reloaded/main/sensors/SensorService.cpp

225 lines
5.9 KiB
C++

/// © MiroZ 2024
#include "app_config.h"
#include "TaskMgr.h"
#include "SensorService.h"
#include "Buffers.h"
#include "SensorData.h"
static const char *TAG = "sensors";
#define ms_to_us(ms) ((ms)*1000)
#define LIGHT_SENSOR_PIN 36
struct BMP_DATA m_bmp_data;
struct BME_DATA m_bme_data;
SensorService::SensorService(AppIF & app_if) : m_app_if(app_if)
{
}
void SensorService::start()
{
ESP_LOGW(TAG, "Starting sensor service...");
esp_log_level_set("gpio", ESP_LOG_WARN);
memset(&m_bmp_data, 0, sizeof(m_bmp_data));
memset(&m_bme_data, 0, sizeof(m_bme_data));
m_bmp280 = new Bmp280(Wire);
m_bme68x = new Bme68x(Wire);
m_ld2410 = new LD2410();
if(!m_bmp280->init())
ESP_LOGE(TAG, "bmp280 sensor error");
if(!m_bme68x->init())
ESP_LOGE(TAG, "bme68x sensor error");
if(!m_ld2410->init())
ESP_LOGE(TAG, "ld2410 sensor error");
assert(m_i2c1_task = TaskMgr::getInstance().createTask(std::bind(&SensorService::run_i2c_1, this),
I2C1_TASK_NAME, I2C1_TASK_STACK_SIZE, I2C1_TASK_PRIORITY, I2C1_TASK_CORE));
assert(m_i2c2_task = TaskMgr::getInstance().createTask(std::bind(&SensorService::run_uart, this),
UART_TASK_NAME, UART_TASK_STACK_SIZE, UART_TASK_PRIORITY, UART_TASK_CORE));
pinMode(LIGHT_SENSOR_PIN, INPUT);
}
void SensorService::postBme68xData(float pressure, float temp)
{
struct msg
{
struct MESSAGE_HEADER header;
struct OTHERS others;
struct GAS gas;
};
uint8_t msg_buffer[100];
struct msg *data_to_send = (struct msg *)msg_buffer;
HEADER_MESSAGE_P(&data_to_send->header);
GAS_MESSAGE_P(&data_to_send->gas, 0);
data_to_send->others.light = m_light_value;
data_to_send->others.pressure = pressure;
data_to_send->others.temp = temp;
int num_total = 0;
struct GAS_DATA * p = data_to_send->gas.data;
for(int n = 0; n < 10; n++)
{
if(m_bme_data.measurement_bitmask & (1 << n))
{
p[num_total].gas_resistance = m_bme_data.measurement[n].resistance;
p[num_total++].index = n;
}
}
data_to_send->gas.header.num_measurements = num_total;
data_to_send->gas.humidity = m_bme_data.humidity;
m_app_if.getBuffer()->putBlock((uint8_t*)&data_to_send, sizeof(*data_to_send) + num_total * sizeof(struct GAS_DATA));
// clear the blackboard
memset(&m_bme_data, 0, sizeof(m_bme_data));
}
/// @brief Actual light value is minimum in 2s window
/// @param light_value
void SensorService::processLight(int light_value)
{
static uint16_t min_light_val = 0xffff;
static int last_light_val = -1;
static uint64_t last_time = esp_timer_get_time();
uint64_t now;
// handle light sensor
if(light_value < min_light_val)
min_light_val = light_value;
now = esp_timer_get_time();
if(now - last_time >= 2000000) // >= 2s
{
ESP_LOGI(TAG, "light: %d", min_light_val);
if(last_light_val >= 0)
{
if(abs(min_light_val - last_light_val) > 4096*5/100)
{
ESP_LOGI(TAG, "light tripped");
struct msg
{
struct MESSAGE_HEADER header;
struct MESSAGE_TYPE_VAL_REASON light;
};
struct msg m;
HEADER_MESSAGE_P(&m.header);
LIGHT_MESSAGE_P(&m.light, min_light_val, 1);
m_app_if.getBuffer()->putBlock((uint8_t*)&m, sizeof(m));
}
}
last_light_val = min_light_val;
m_light_value = min_light_val;
min_light_val = 0xffff;
last_time = now;
}
}
// handles pressure and voc sensor
void SensorService::run_i2c_1()
{
while(true)
{
m_bmp280->read(m_bmp_data.temp, m_bmp_data.pressure);
bool bme_cycle_finished = m_bme68x->read(&m_bme_data);
uint16_t read_light_val = analogRead(LIGHT_SENSOR_PIN);
if(bme_cycle_finished)
{
postBme68xData(m_bmp_data.pressure, m_bmp_data.temp);
}
processLight(read_light_val);
delay(10);
}
}
// handles radar only
void SensorService::run_uart()
{
int64_t last_read = esp_timer_get_time();
while(true)
{
bool has_read = m_ld2410->read();
if(has_read && esp_timer_get_time() - last_read >= ms_to_us(10000-50))
{
int64_t now = esp_timer_get_time();
ESP_LOGI(TAG, "count %d", (int)m_ld2410->stationary_energy[0]);
if(m_ld2410->stationary_energy[0] != 0)
{
struct msg
{
struct MESSAGE_HEADER header;
struct RADAR radar;
};
struct msg m;
HEADER_MESSAGE_P(&m.header);
RADAR_MESSAGE_P(&m.radar);
for(int n = 0; n < 24; n++)
{
if(n < 14)
m.radar.vals[n] = m_ld2410->motion_energy[n] > 0xffff ? 0xffff : (uint16_t)m_ld2410->motion_energy[n];
else
m.radar.vals[n] = m_ld2410->stationary_energy[n-14] > 0xffff ? 0xffff : (uint16_t)m_ld2410->stationary_energy[n-14];
}
m_app_if.getBuffer()->putBlock((uint8_t*)&m, sizeof(m));
ESP_LOGI(TAG, "delta t: %lld", (now - last_read)/1000);
last_read = now;
#if 0
ESP_LOGI("stationary energy", "%0.0f %0.0f %0.0f %0.0f %0.0f %0.0f %0.0f",
m_ld2410->stationary_energy[3]/m_ld2410->stationary_energy[0],
m_ld2410->stationary_energy[4]/m_ld2410->stationary_energy[0],
m_ld2410->stationary_energy[5]/m_ld2410->stationary_energy[0],
m_ld2410->stationary_energy[6]/m_ld2410->stationary_energy[0],
m_ld2410->stationary_energy[7]/m_ld2410->stationary_energy[0],
m_ld2410->stationary_energy[8]/m_ld2410->stationary_energy[0],
m_ld2410->stationary_energy[9]/m_ld2410->stationary_energy[0]);
ESP_LOGW("motion energy", "%0.0f %0.0f %0.0f %0.0f %0.0f %0.0f %0.0f %0.0f %0.0f",
m_ld2410->motion_energy[5]/m_ld2410->motion_energy[0],
m_ld2410->motion_energy[6]/m_ld2410->motion_energy[0],
m_ld2410->motion_energy[7]/m_ld2410->motion_energy[0],
m_ld2410->motion_energy[8]/m_ld2410->motion_energy[0],
m_ld2410->motion_energy[9]/m_ld2410->motion_energy[0],
m_ld2410->motion_energy[10]/m_ld2410->motion_energy[0],
m_ld2410->motion_energy[11]/m_ld2410->motion_energy[0],
m_ld2410->motion_energy[12]/m_ld2410->motion_energy[0],
m_ld2410->motion_energy[13]/m_ld2410->motion_energy[0]);
#endif
m_ld2410->resetGates();
}
}
if(has_read)
// next read will happen in 100ms. sleep untill just before then.
delay(95);
}
}