181 lines
7.3 KiB
C++

/*
Device is an I2C/SPI compatible base class library.
Copyright (C) Martin Lindupp 2019
V1.0.0 -- Initial release
V1.0.1 -- Added ESP32 HSPI support
V1.0.2 -- Modification to allow external creation of HSPI object on ESP32
V1.0.3 -- Addition of SPI write and read byte masks
V1.0.4 -- Modification to allow user-defined pins for I2C operation on the ESP8266
V1.0.5 -- Modification to allow user-defined pins for I2C operation on the ESP32
V1.0.6 -- Initialise "device" constructor member variables in the same order they are declared
V1.0.7 -- Allow for additional TwoWire instances
V1.0.8 -- Fixed uninitialised "Wire" pointer for ESP8266/ESP32 with user defined I2C pins
The MIT License (MIT)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <Device.h>
////////////////////////////////////////////////////////////////////////////////
// Device Class Constructors
////////////////////////////////////////////////////////////////////////////////
Device::Device(TwoWire& twoWire) : comms(I2C_COMMS), i2c(&twoWire) {} // Initialise constructor for I2C communications
#ifdef ARDUINO_ARCH_ESP8266
Device::Device(uint8_t sda, uint8_t scl, TwoWire& twoWire) : // Constructor for ESP8266 I2C with user-defined pins
comms(I2C_COMMS_DEFINED_PINS), i2c(&twoWire), sda(sda), scl(scl) {}
#endif
Device::Device(uint8_t cs) : comms(SPI_COMMS), cs(cs), spiClockSpeed(1000000) {} // Constructor for SPI communications
#ifdef ARDUINO_ARCH_ESP32
Device::Device(uint8_t sda, uint8_t scl, TwoWire& twoWire) :
comms(I2C_COMMS_DEFINED_PINS), i2c(&twoWire), sda(sda), scl(scl) {} // Constructor for ESP32 I2C with user-defined pins
Device::Device(uint8_t cs, uint8_t spiPort, SPIClass& spiClass) // Constructor for ESP32 HSPI communications
: comms(SPI_COMMS), cs(cs), spiPort(spiPort), spi(&spiClass), spiClockSpeed(1000000) {}
#endif
////////////////////////////////////////////////////////////////////////////////
// Device Public Member Function
////////////////////////////////////////////////////////////////////////////////
void Device::setClock(uint32_t clockSpeed) // Set the I2C or SPI clock speed
{
if (comms == I2C_COMMS)
{
i2c->setClock(clockSpeed);
}
else
{
spiClockSpeed = clockSpeed;
}
}
////////////////////////////////////////////////////////////////////////////////
// Device I2C & SPI Wrapper (Protected) Member Functions
////////////////////////////////////////////////////////////////////////////////
void Device::initialise() // Initialise device communications
{
if (comms == I2C_COMMS) // Check with communications bus has been selected I2C or SPI
{
i2c->begin(); // Initialise I2C communication
i2c->setClock(800000); // Set the SCL clock to default of 400kHz
}
#if defined ARDUINO_ARCH_ESP8266 || defined ARDUINO_ARCH_ESP32
else if (comms == I2C_COMMS_DEFINED_PINS) // Check if the ESP8266 or ESP32 has specified user-defined I2C pins
{
i2c->begin(sda, scl); // Initialise I2C communication with user-defined pins
i2c->setClock(800000); // Set the SCL clock to default of 400kHz
comms = I2C_COMMS; // Set the communications to standard I2C
}
#endif
else
{
digitalWrite(cs, HIGH); // Pull the chip select (CS) pin high
pinMode(cs, OUTPUT); // Set-up the SPI chip select pin
#ifdef ARDUINO_ARCH_ESP32
if (spiPort == HSPI) // Set-up spi pointer for VSPI or HSPI communications
{
spi->begin(14, 27, 13, 2); // Start HSPI on SCK 14, MOSI 13, MISO 24, SS CS (GPIO2 acts as dummy pin)
}
else
{
spi = &SPI; // Start VSPI on SCK 5, MOSI 18, MISO 19, SS CS
spi->begin();
}
#else
spi = &SPI; // Set-up spi pointer for SPI communications
spi->begin();
#endif
}
}
void Device::setI2CAddress(uint8_t addr) // Set the Device's I2C address
{
address = addr;
}
void Device::writeByte(uint8_t subAddress, uint8_t data)
{
if (comms == I2C_COMMS)
{
i2c->beginTransmission(address); // Write a byte to the sub-address using I2C
i2c->write(subAddress);
i2c->write(data);
i2c->endTransmission();
}
else // if (comms == SPI_COMMS)
{
spi->beginTransaction(SPISettings(spiClockSpeed, MSBFIRST, SPI_MODE0)); // Write a byte to the sub-address using SPI
digitalWrite(cs, LOW);
spi->transfer(subAddress & WRITE_MASK);
spi->transfer(data);
digitalWrite(cs, HIGH);
spi->endTransaction();
}
}
uint8_t Device::readByte(uint8_t subAddress) // Read a byte from the sub-address using I2C
{
uint8_t data = 0x00;
if (comms == I2C_COMMS)
{
i2c->beginTransmission(address);
i2c->write(subAddress);
i2c->endTransmission(false);
i2c->requestFrom(address, (uint8_t)1);
data = i2c->read();
}
else // if (comms == SPI_COMMS)
{
spi->beginTransaction(SPISettings(spiClockSpeed, MSBFIRST, SPI_MODE0)); // Read a byte from the sub-address using SPI
digitalWrite(cs, LOW);
spi->transfer(subAddress | READ_MASK);
data = spi->transfer(data);
digitalWrite(cs, HIGH);
spi->endTransaction();
}
return data; // Return data read from sub-address register
}
void Device::readBytes(uint8_t subAddress, uint8_t* data, uint16_t count)
{
if (comms == I2C_COMMS) // Read "count" bytes into the "data" buffer using I2C
{
i2c->beginTransmission(address);
i2c->write(subAddress);
i2c->endTransmission(false);
uint8_t i = 0;
i2c->requestFrom(address, (uint8_t)count);
while (i2c->available())
{
data[i++] = i2c->read();
}
}
else // if (comms == SPI_COMMS)
{
spi->beginTransaction(SPISettings(spiClockSpeed, MSBFIRST, SPI_MODE0)); // Read "count" bytes into the "data" buffer using SPI
digitalWrite(cs, LOW);
spi->transfer(subAddress | READ_MASK);
spi->transfer(data, count);
digitalWrite(cs, HIGH);
spi->endTransaction();
}
}